Effects of Pressurizing Cryogenic Treatments on Physical and Mechanical Properties of Shale Core Samples—An Experimental Study

Author:

Khalil RayanORCID,Emadi HosseinORCID,Altawati FaisalORCID

Abstract

The technique of cryogenic treatments requires injecting extremely cold fluids such as liquid nitrogen (LN2) into formations to create fractures in addition to connecting pre-existing fracture networks. This study investigated the effects of implementing and pressurizing cryogenic treatment on the physical (porosity and permeability) and mechanical properties (Young’s modulus, Poisson’s ratio, and bulk compressibility) of the Marcellus shale samples. Ten Marcellus core samples were inserted in a core holder and heated to 66 °C using an oven. Then, LN2 (−177 °C) was injected into the samples at approximately 0.14 MPa. Nitrogen was used to pressurize nine samples at injection pressures of 1.38, 2.76, and 4.14 MPa while the tenth core sample was not pressurized. Using a cryogenic pressure transducer and a T-type thermocouple, the pressure and temperature of the core holder were monitored and recorded during the test. The core samples were scanned using a computed tomography (CT) scanner, and their porosities, permeability, and ultrasonic velocities were measured both before and after conducting the cryogenic treatments. The analyses of CT scan results illustrated that conducting cryogenic treatments created new cracks inside all the samples. These cracks increased the pore volume, and as a result, the porosity, permeability, and bulk compressibility of the core samples increased. The creations of the new cracks also resulted in reductions in the compressional and shear velocities of the samples, and as a result, decreasing the Young’s modulus and Poisson’s ratio. Moreover, the results revealed that pressurizing the injected LN2 increased the alterations of aforementioned properties.

Publisher

MDPI AG

Reference51 articles.

1. Hydraulic Fracturing of Oil & Gas Wells Drilled in Shale https://geology.com/articles/hydraulic-fracturing/

2. Improved Hydrocarbon Recovery Using Mixtures of Energizing Chemicals in Unconventional Reservoirs

3. Stimulating Unconventional Reservoirs: Maximizing Network Growth While Optimizing Fracture Conductivity

4. Unconventional Reservoir Geomechanics;Zoback,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3