Improved Hydrocarbon Recovery Using Mixtures of Energizing Chemicals in Unconventional Reservoirs

Author:

Mohanty Kishore K.1,Tong Songyang1,Miller Chammi1,Zeng Tongzhou1,Honarpour Matt M.2,Turek Edward2,Peck Doug D.2

Affiliation:

1. University of Texas at Austin

2. BHP

Abstract

Summary The objective of this work is to design and evaluate an effective blend of chemicals that can be injected into shale (black oil or critical fluid) reservoirs to enhance hydrocarbon recovery. The blend can be implemented as a prepad fluid ahead of hydraulic–fracturing fluid or as a remedial fluid later in the life of a well. A chemical blend (CB) consisting of an organic solvent (OS), a surfactant, and an oxidizing agent (OA) (in conjunction with an acid) was designed, developed, and tested in the laboratory on crushed rocks, core plugs, and fractured cores to evaluate the interactions of the chemicals with the shale samples. Microcomputed–tomography (micro–CT) scanning, scanning electron microscopy, and Brinell hardness tests were used to evaluate surface changes in the shales. The results of laboratory experiments demonstrate that the CB extracts up to 30% of mobile oil in crushed rocks and improves permeability by 25 to 100% in thin core plugs. Some of the mechanisms that might support the CB application are as follows: (1) pressurization of the formation and reopening of the closed fractures, thus improving well productivity; (2) extraction and mobilization of low–mobility oil, remnants of the original kerogen, removal of deposited salt, and trapped water in matrix and fracture network that impedes fluid flow; (3) creation of pathways to high–pressure liquid–rich small organic pores, where hydrocarbon liquids are trapped, adsorbed, and dissolved in the kerogen; (4) creation of flow pathways for the intrusion of aqueous–based fluids in oil–wet organic–rich rocks with wettability alteration to accelerate the injection, countercurrent imbibition, and osmotic processes; and (5) enhancement of porosity and permeability of fracture surfaces by the introduction of a delayed reaction mechanism to deliver acids deeper into the microfracture network without compromising rock mechanical properties. The presence of sulfate ions in the OA did not contribute to any noticeable scale deposit while delaying the reactivity of acid with inorganic components of shale surfaces. Several field trials have been conducted successfully in the Eagle Ford (EF) Formation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3