Encounter Probability and Risk of Flood and Drought under Future Climate Change in the Two Tributaries of the Rao River Basin, China

Author:

Liu Mengyang,Yin YixingORCID,Ma Xieyao,Zhang ZengxinORCID,Wang Guojie,Wang Shenmin

Abstract

Extreme hydrometeorological events have far-reaching impacts on our daily life and may occur more frequently with rising global temperatures. The probability of the concurrence of these extreme events in the upper reaches of the river network is of particular importance for the lower reaches, which is referred to as the encounter probability of extreme events, and may have even stronger socio-economic impacts. In this study, the Rao River basin in China is selected as an example to explore the encounter probability and risk of future flood and drought based on the encounter probability model. The reference period was 1971–2000, and the future prediction periods were 2020–2049 and 2070–2099. The calibrated and validated statistical downscaling model (SDSM) was used to generate future daily precipitation and daily mean temperature. The calibrated and validated Xin’anjiang model was used to predict future daily mean streamflow in the basin. In addition, the encounter probability model was established using the joint distribution of occurrence dates and magnitudes of daily mean streamflow to investigate the encounter probabilities of flood and drought under future climate change. Results show that, for flood occurrence dates, the encounter probability during the flood season would decrease in the two future periods while the dates would generally be earlier. For flood magnitudes, the encounter probability of the two tributaries’ floods and the probability of flood at each tributary would decrease (e.g., the encounter probability with the same-frequency of 100-years would reduce by 53% to 95%), which indicates reduced risk of future major floods in the study area. For drought occurrence dates, the encounter probability during the non-flood season would decrease. For drought magnitudes, the encounter probability would decrease (e.g., the encounter probability with the same-frequency of 100-years would reduce by 18% to 33%), even though the probability of future drought at each tributary would increase. Such analyses provide important probabilistic information to help us prepare for the upcoming extreme events.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3