K-Means Clustering-Based Safety System in Large-Scale Industrial Site Using Industrial Wireless Sensor Networks

Author:

Seo DongyeongORCID,Kim Sangdae,Oh SeungminORCID,Kim Sang-Ha

Abstract

A large number of workers and heavy equipment are used in most industrial sizes, and the prevention of safety accidents is one of the most important issues. Therefore, although a number of systems have been proposed to prevent accidents, existing studies assume that workers are gathered in some areas. These assumptions are not suitable for large-scale industrial sites in which workers form as a group and work in a large area. In other words, in a large-scale industrial site, existing schemes are unsuitable for the timely notifying of warnings of threats, and excessive energy is consumed. Therefore, we propose a k-means clustering-based safety system for a large-scale industrial site. In the proposed scheme, workers deployed over a large area are divided into an appropriate number of groups, and threat notification is delivered by a multicasting tree toward each cluster. The notification to workers is delivered through local flooding in each cluster. The simulation results show that the system is able to deliver the notification within a valid time, and it is energy efficient compared to the existing scheme.

Funder

Chungnam National University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. Operations & Maintenance Best Practices-A Guide to Achieving Operational Efficiency (Release 3);Sullivan,2010

2. Adaptation of wireless sensor network in industries and their architecture, standards and applications;Qureshi;World Appl. Sci. J.,2014

3. State of the Art and Future Applications of Industrial Wireless Sensor Networks;Ehrlich,2018

4. Using Wireless Sensor Networks for Fire Rescue Applications: Requirements and Challenges

5. Wired and wireless sensor networks for industrial applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3