Modeling an evaluation framework for adding IoT water-level sensors based on ANN-derived 2D inundation simulations

Author:

Wu Shiang-Jen1

Affiliation:

1. Department of Civil and Disaster Prevention Engineering, National United University, Miaoli 360302, Taiwan.

Abstract

ABSTRACT This study aims to develop a smart model for evaluating the spatial density of added IoT sensors (called AIOT grids) to optimize their amount and placements, named SM_ESD_AIOT model; the proposed SM_ESD_AIOT model mainly collaborates cluster analysis with Akaike information criterion (AIC) based on the resulting 2D inundation simulations from the ANN-derived model in comparison with those from the physically based hydrodynamic (SOBEK) model under various sets of AIOT-based sensor networks. Miaoli City in northern Taiwan is selected as the study with the three practical IoT sensors; also, the 1,939 electrical poles are treated as the potential AIOT grids grouped under 5, 10, 15, and 20 clusters. Using a simulated rainfall-induced flood event of 51 h, the five AIOT-based sets, consisting of five added and three practical IoT sensors, could be selected as the optimal one with the minimum AIC (around 1.45). Also, on average, the 2D inundation simulation indices from the optimal five AIOT-based sensor networks are 0.7 better than the results from the three IoT sensors (about 0.495). As a result, the proposed SM_ESD_AIOT is shown to efficiently optimize the amount and placements of the AIOT sensors to enhance the reliability and accuracy of 2D inundation simulation.

Publisher

IWA Publishing

Reference46 articles.

1. A new look at the statistical model identification;IEEE Transactions on Automatic Control,1974

2. Disaster management using IOT and machine learning using K means clustering algorithm;International Journal of Advances in Computer Science and Technology,2020

3. Computer vision and IoT-based sensors in flood monitoring and mapping: A systematic review;Sensors,2019

4. Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based K-means clustering, a demonstration on Western Black Sea Region of Turkey;International Soil and Water Conservation Research,2020

5. Optimal design of rain gauge network in Johor by using geostatistics and particle swarm optimization;International Journal of GEOMATE,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3