Experimental and Numerical Investigation of Forming Limit Diagrams during Single Point Incremental Forming for Al/Cu Bimetallic Sheets

Author:

Tayebi Payam1,Nasirin Amir Reza1,Akbari Habibolah1,Hashemi Ramin1ORCID

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran

Abstract

This article investigated the formability of aluminum/copper bimetal sheets during single-point incremental forming. First, the two-layer sheets were produced by the explosive welding process; then, the rolling process was performed with 50% strain on two-layer samples. Considering the importance of examining the mechanical and metallurgical properties on the formability of the two-layer samples, the mechanical properties were first examined, including the uniaxial tensile and micro-hardness tests. Then, metallurgical tests were performed, including scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDX) to investigate the fracture surface and penetration depth and an X-ray diffraction (XRD) test to check the secondary phase particles in the penetration zone of Al and Cu in five different annealing temperature conditions. Considering that the forming limit diagram (FLD) is dependent on the strain path, to study the effect of the strain path, the two-layer samples were formed by three geometries: pyramid, cone, and straight groove. Simulations of FLD by Abaqus software 6.14-4 with four different methods were studied: FLDCRT, effective strain rate (ESR), second derivation of thinning (SDT), and maximum strain rate (MSR). The results showed that the FLDCRT criterion provided a more accurate estimate of the necking time. In the following, the values of the thickness distribution were carried out by experimental and numerical methods, and the results between the methods were in good agreement.

Funder

Iran National Science Foundation

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fracture in stretch flanging by single point incremental forming;International Journal of Mechanical Sciences;2024-09

2. Experimental and numerical investigation of the solid cold-welding properties of the APB process of Al/Cu bulk composites;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3