Study on the Optimization of Heat Transfer Coefficient of a Rare Earth Wrought Magnesium Alloy in Residual Stress Analysis

Author:

Xie Qiumin123,Wu Yunxin134,Wu Yuanzhi2,Peng Shunli34

Affiliation:

1. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China

2. College of Intelligent Manufacturing and Mechanical Engineering, Hunan Institute of Technology, Hengyang 421002, China

3. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China

4. Light Alloy Research Institute, Central South University, Changsha 410083, China

Abstract

To investigate the heat transfer coefficient (HTC) of a newly developed rare-earth wrought magnesium alloy under different cooling rates, the experiment of solution treatment followed by water quenching or air cooling process was carried out for calculation by lumped capacitance method (LCM) and optimized by inverse heat transfer method (IHTM), and cooling temperature curves were simulated afterward. In water quenching, the larger the temperature difference between the sample and water, the larger the maximum HTC, and the earlier it reached the maximum value, and in air cooling the HTC became larger with the airflow speeds increased. In LCM, the peak values of the HTC were 2840 W/(m2·°C) in water quenching and 54 W/(m2·°C) in air cooling. The corresponding HTC was 2388 W/(m2·°C) in IHTM. The maximum absolute average relative error (AARE) of temperature simulation in water quenching decreased from 8.46% in LCM to 2.45% in IHTM. The residual stress(RS) of a large conical component was simulated using both non-optimized and optimized HTC, the RS in the IHTM was ~30 MPa smaller than that in the ILCM, because the corresponding HTC was smaller, and the comparison of the simulation results with the measurements revealed that the RS using HTC in the IHTM is more accurate.

Funder

National Natural Science Foundation of China

the Project of State Key Laboratory of High-Performance Complex Manufacturing, Central South University

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3