Solid-State Synthesis of SiC Particle-Reinforced AZ91D Composites: Microstructure and Reinforcement Mechanisms

Author:

Shi Qian12ORCID,Cui Pengxing23ORCID,Hu Maoliang1ORCID,Wang Fei1ORCID,Xu Hongyu1,Zhou Xiaobing23

Affiliation:

1. School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China

2. Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

3. Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

Abstract

Safe and efficient recycling of industrially generated machined chips is a high-priority technological issue. In this study, the effect of SiC particles (SiCp) on the microstructure and mechanical properties of SiCp/AZ91D composites is systematically analyzed, and the reinforcement mechanism of SiCp on composites is investigated. Different contents of SiCp/AZ91D composites are fabricated by solid-state synthesis. The results show that the incorporation of SiCp refined the grains of SiCp/AZ91D composites, which is related to the uniform distribution of SiCp at the grain boundaries. The strong bonding of SiCp with the AZ91D matrix inhibited the generation and extension of cracks, which led to the simultaneous increase in the yield strength (YS) and elongation (EL) of the SiCp/AZ91D composites. The mechanical properties of the 3 wt.% SiCp/AZ91D composites are the most superior, with an average grain size, Vickers hardness, ultimate tensile strength (UTS), YS, and EL of 6.69 ± 4.48 μm, 89.5 ± 2.5 HV, 341 ± 11 MPa, 172 ± 8 MPa, and 4.43 ± 0.18%, respectively. The reinforcement mechanisms of SiCp/AZ91D composites are mainly grain refinement and dislocation strengthening. Solid-state synthesis is an effective method for recycling magnesium alloy chips.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Zhejiang Provincial Natural Science Foundation of China

Ningbo Youth Science and Technology Innovation Leading Talent Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3