High-Temperature Mechanical Properties and Microstructure of Ultrathin 3003mod Aluminum Alloy Fins

Author:

Zheng Wenhui1,Ni Chengyuan1,Xia Chengdong12ORCID,Deng Shaohui1,Jiang Xiaoying1,Xu Wei1

Affiliation:

1. College of Mechanical Engineering, Quzhou University, Quzhou 324000, China

2. Zhejiang Bulaoshen Civil Air Protection Equipment Co., Ltd., Quzhou 324022, China

Abstract

The effects of Si, Fe and Zr elements on the high temperature properties and microstructure of ultrathin 3003mod aluminum alloy fins were studied by means of high-temperature tensile tests, sagging tests and microstructure analyses. The results show that the alloying of Si, Fe, and Zr elements formed a large amount of nano-scale α-Al(Mn,Fe) Si and Al3Zr particles, and significantly reduced the number of micro-scale coarse Al6(Mn,Fe) particles in the 3003mod aluminum alloy, exhibiting 5 to 10 MPa higher strength and better sagging resistance than 3003 aluminum alloy at the same temperature. The variations in properties such as high-temperature mechanical properties, sagging resistance and elongation below 400 °C were ascribed to the high-stability nanoparticles effectively preventing recovery and grain boundary migration, as well as reducing the nucleation cores of recrystallization. The nanoparticles in 3003mod aluminum alloy were coarsened significantly at 500 °C, and the grains were completely recrystallized and coarsened, resulted in a significant decrease in strength, sagging resistance and elongation compared with these at 400 °C.

Funder

National College Students’ Innovation and Entrepreneurship Training Program

Zhejiang College Students’ Innovation and Entrepreneurship Training Program

Joint Funds of the Zhejiang Provincial Natural Science Foundation of China

Quzhou Science and Technology Bureau

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3