The Influence of Homogenisation Parameters on the Microstructure and Hardness of AlMnFeMgSi(Zr) Wrought Alloys

Author:

Broer Jette1,Mallow Sina1,Oldenburg Kevin2,Milkereit Benjamin13ORCID,Kessler Olaf13ORCID

Affiliation:

1. Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany

2. Centre for Interdisciplinary Electron Microscopy (ELMI-MV), Department Life, Light & Matter, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany

3. Competence Centre °CALOR, Department Life, Light & Matter, Faculty of Interdisciplinary Research, University of Rostock, Albert-Einstein-Str. 25, 18059 Rostock, Germany

Abstract

The purpose of this investigation is to improve the mechanical properties of AlMnFeMgSi wrought alloys by forming a high number density of nano-scaled strengthening dispersoids during homogenisation annealing. The process chain for AlMnFeMgSi wrought alloys includes homogenisation annealing after continuous casting. In this step, inhomogeneities and segregations are dissolved and dispersoids are precipitated. The formed dispersoids hinder grain growth, but usually cannot increase the strength due to their coarse size of some 100 nm. Lower homogenisation temperatures should result in the precipitation of smaller dispersoids during homogenisation. The addition of Zr was investigated to increase this effect. Zr should form further dispersoids from the Al3Zr phase. This requires a fundamental understanding of the temperature-dependent kinetics and the nature of precipitation formation during homogenisation. For this purpose, the as-cast state is first characterised via differential scanning calorimetry. Subsequently, a large number of homogenisation parameters are investigated and quantified via hardness testing. The micro- and nanostructure are investigated for promising parameters and a particle analysis is performed. In the present study, it was possible to precipitate fine dispersoids of few 10 nm by reducing the homogenisation temperature, which resulted in a significant increase in hardness. Alloying with Zr enabled the precipitation of further dispersoids with a size of a few nm in a high number density, which further increased the strength.

Funder

German Research Foundation

Jeol JEM-ARM200F NEOARM STEM

ThermoFisher Talos L120C

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3