Twenty-First Century Streamflow and Climate Change in Forest Catchments of the Central Appalachian Mountains Region, US

Author:

Gaertner Brandi,Fernandez Rodrigo,Zegre Nicolas

Abstract

Forested catchments are critical sources of freshwater used by society, but anthropogenic climate change can alter the amount of precipitation partitioned into streamflow and evapotranspiration, threatening their role as reliable fresh water sources. One such region in the eastern US is the heavily forested central Appalachian Mountains region that provides fresh water to local and downstream metropolitan areas. Despite the hydrological importance of this region, the sensitivity of forested catchments to climate change and the implications for long-term water balance partitioning are largely unknown. We used long-term historic (1950–2004) and future (2005–2099) ensemble climate and water balance data and a simple energy–water balance model to quantify streamflow sensitivity and project future streamflow changes for 29 forested catchments under two future Relative Concentration Pathways. We found that streamflow is expected to increase under the low-emission pathway and decrease under the high-emission pathway. Furthermore, despite the greater sensitivity of streamflow to precipitation, larger increases in atmospheric demand offset increases in precipitation-induced streamflow, resulting in moderate changes in long-term water availability in the future. Catchment-scale results are summarized across basins and the region to provide water managers and decision makers with information about climate change at scales relevant to decision making.

Funder

National Science Foundation

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference93 articles.

1. Managing Forests for Both Downstream and Downwind Water

2. Implications of Upstream Flow Availability for Watershed Surface Water Supply across the Conterminous United States

3. Running Pure: The Importance of Forest Protected Areas to Drinking Water;Dudley,2003

4. Ecohydrology of Water Controlled Ecosystems: Soil Moisture and Plant Dynamics;Rodriguez-Iturbe,2004

5. Mountains of the world, water towers for humanity: Typology, mapping, and global significance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3