Predicting Climate Change Impacts on Water Balance Components of a Mountainous Watershed in the Northeastern USA

Author:

Abesh Bidisha Faruque,Jin Lilai,Hubbart Jason A.ORCID

Abstract

Forcing watershed models with downscaled climate data to quantify future water regime changes can improve confidence in watershed planning. The Soil Water Assessment Tool (SWAT) was calibrated (R2 = 0.77, NSE = 0.76, and PBIAS = 7.1) and validated (R2 = 0.8, NSE = 0.78, and PBIAS = 8.8) using observed monthly streamflow in a representative mountainous watershed in the northeastern United States. Four downscaled global climate models (GCMs) under two Representative Concentration Pathways (RCP 4.5, RCP 8.5) were forced. Future periods were separated into three 20-year intervals: 2030s (2031–2050), 2050s (2051–2070), and 2070s (2071–2099), and compared to baseline conditions (1980–1999). Ensemble means of the four GCMs showed an increasing trend for precipitation with the highest average increase of 6.78% in 2070s under RCP 8.5. Evapotranspiration (ET) had increasing trends over the 21st century with the 2030s showing greater increases under both RCPs. Both streamflow (4.58–10.43%) and water yield (1.2–7.58%) showed increasing trends in the 2050s and 2070s under both RCPs. Seasonal increases in precipitation were predicted for most months of spring and summer. ET was predicted to increase from Spring to early Fall. Study results demonstrate the potential sensitivity of mountainous watersheds to future climate changes and the need for ongoing predictive modeling studies to advance forward looking mitigation decisions.

Funder

National Institute of Food and Agriculture

Natural Resources Conservation Service

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3