Tiotropium Is Predicted to Be a Promising Drug for COVID-19 Through Transcriptome-Based Comprehensive Molecular Pathway Analysis

Author:

Kang Keunsoo,Kim Hoo,Choi Yoonjung

Abstract

The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects almost everyone in the world in many ways. We previously predicted antivirals (atazanavir, remdesivir and lopinavir/ritonavir) and non-antiviral drugs (tiotropium and rapamycin) that may inhibit the replication complex of SARS-CoV-2 using our molecular transformer–drug target interaction (MT–DTI) deep-learning-based drug–target affinity prediction model. In this study, we dissected molecular pathways upregulated in SARS-CoV-2-infected normal human bronchial epithelial (NHBE) cells by analyzing an RNA-seq data set with various bioinformatics approaches, such as gene ontology, protein–protein interaction-based network and gene set enrichment analyses. The results indicated that the SARS-CoV-2 infection strongly activates TNF and NFκB-signaling pathways through significant upregulation of the TNF, IL1B, IL6, IL8, NFKB1, NFKB2 and RELB genes. In addition to these pathways, lung fibrosis, keratinization/cornification, rheumatoid arthritis, and negative regulation of interferon-gamma production pathways were also significantly upregulated. We observed that these pathologic features of SARS-CoV-2 are similar to those observed in patients with chronic obstructive pulmonary disease (COPD). Intriguingly, tiotropium, as predicted by MT–DTI, is currently used as a therapeutic intervention in COPD patients. Treatment with tiotropium has been shown to improve pulmonary function by alleviating airway inflammation. Accordingly, a literature search summarized that tiotropium reduced expressions of IL1B, IL6, IL8, RELA, NFKB1 and TNF in vitro or in vivo, and many of them have been known to be deregulated in COPD patients. These results suggest that COVID-19 is similar to an acute mode of COPD caused by the SARS-CoV-2 infection, and therefore tiotropium may be effective for COVID-19 patients.

Funder

Dankook University

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3