Affiliation:
1. Ministry of Education Key Laboratory of Bioinformatics Research Department of Bioinformatics at the Beijing National Research Center for Information Science and Technology Center for Synthetic and Systems Biology Department of Automation Tsinghua University Beijing 100084 China
2. College of Software Nankai University Tianjin 300350 China
3. Department of Statistics Stanford University Stanford CA 94305 USA
Abstract
Computational methods for DDIs and DTIs prediction are essential for accelerating the drug discovery process. We proposed a novel deep learning method DeepDrug, to tackle these two problems within a unified framework. DeepDrug is capable of extracting comprehensive features of both drug and target protein, thus demonstrating a superior prediction performance in a series of experiments. The downstream applications show that DeepDrug is useful in facilitating drug repositioning and discovering the potential drug against specific disease.BackgroundComputational approaches for accurate prediction of drug interactions, such as drug‐drug interactions (DDIs) and drug‐target interactions (DTIs), are highly demanded for biochemical researchers. Despite the fact that many methods have been proposed and developed to predict DDIs and DTIs respectively, their success is still limited due to a lack of systematic evaluation of the intrinsic properties embedded in the corresponding chemical structure.MethodsIn this paper, we develop DeepDrug, a deep learning framework for overcoming the above limitation by using residual graph convolutional networks (Res‐GCNs) and convolutional networks (CNNs) to learn the comprehensive structure‐ and sequence‐based representations of drugs and proteins.ResultsDeepDrug outperforms state‐of‐the‐art methods in a series of systematic experiments, including binary‐class DDIs, multi‐class/multi‐label DDIs, binary‐class DTIs classification and DTIs regression tasks. Furthermore, we visualize the structural features learned by DeepDrug Res‐GCN module, which displays compatible and accordant patterns in chemical properties and drug categories, providing additional evidence to support the strong predictive power of DeepDrug. Ultimately, we apply DeepDrug to perform drug repositioning on the whole DrugBank database to discover the potential drug candidates against SARS‐CoV‐2, where 7 out of 10 top‐ranked drugs are reported to be repurposed to potentially treat coronavirus disease 2019 (COVID‐19).ConclusionsTo sum up, we believe that DeepDrug is an efficient tool in accurate prediction of DDIs and DTIs and provides a promising insight in understanding the underlying mechanism of these biochemical relations.
Subject
Applied Mathematics,Computer Science Applications,Biochemistry, Genetics and Molecular Biology (miscellaneous),Modeling and Simulation
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献