A Multiverse Graph to Help Scientific Reasoning from Web Usage: Interpretable Patterns of Assessor Shifts in GRAPHYP

Author:

Fabre Renaud1ORCID,Azeroual Otmane2ORCID,Schöpfel Joachim3ORCID,Bellot Patrice4ORCID,Egret Daniel5ORCID

Affiliation:

1. Dionysian Economics Laboratory (LED), University of Paris 8, 93200 Saint-Denis, France

2. German Centre for Higher Education Research and Science Studies (DZHW), 10117 Berlin, Germany

3. GERiiCO-Labor, Groupe d’Études et de Recherche Interdisciplinaire en Information et Communication, University of Lille, 59000 Lille, France

4. Aix Marseille University (AMU), CNRS, LIS, 13007 Marseille, France

5. Observatoire de Paris, PSL University, 75006 Paris, France

Abstract

The digital support for scientific reasoning presents contrasting results. Bibliometric services are improving, but not academic assessment; no service for scholars relies on logs of web usage to base query strategies for relevance judgments (or assessor shifts). Our Scientific Knowledge Graph GRAPHYP innovates with interpretable patterns of web usage, providing scientific reasoning with conceptual fingerprints and helping identify eligible hypotheses. In a previous article, we showed how usage log data, in the form of ‘documentary tracks’, help determine distinct cognitive communities (called adversarial cliques) within sub-graphs. A typology of these documentary tracks through a triplet of measurements from logs (intensity, variety and attention) describes the potential approaches to a (research) question. GRAPHYP assists interpretation as a classifier, with possibilistic graphical modeling. This paper shows what this approach can bring to scientific reasoning; it involves visualizing complete interpretable pathways, in a multi-hop assessor shift, which users can then explore toward the ‘best possible solution’—the one that is most consistent with their hypotheses. Applying the Leibnizian paradigm of scientific reasoning, GRAPHYP highlights infinitesimal learning pathways, as a ‘multiverse’ geometric graph in modeling possible search strategies answering research questions.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference74 articles.

1. Fabre, R., Azeroual, O., Bellot, P., Schöpfel, J., and Egret, D. (2022). Retrieving Adversarial Cliques in Cognitive Communities: A New Conceptual Framework for Scientific Knowledge Graphs. Future Internet, 14.

2. Davis, E. (2023). Benchmarks for Automated Commonsense Reasoning: A Survey. arXiv.

3. The dark sides of AI;Cheng;Electron. Mark.,2022

4. Artificial intelligence: A powerful paradigm for scientific research;Xu;Innovation,2021

5. Improving Access to Scientific Literature with Knowledge Graphs;Auer;Bibl. Forsch. Und Prax.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3