Validation of a Gas Chromatography-Mass Spectrometry Method for the Measurement of the Redox State Metabolic Ratios Lactate/Pyruvate and β-Hydroxybutyrate/Acetoacetate in Biological Samples

Author:

Wijngaard Robin,Perramón MeritxellORCID,Parra-Robert Marina,Hidalgo Susana,Butrico Gina,Morales-Ruiz Manuel,Zeng Muling,Casals EudaldORCID,Jiménez WladimiroORCID,Fernández-Varo GuillermoORCID,Shulman Gerald I.,Cline Gary W.,Casals GregoriORCID

Abstract

The metabolic ratios lactate/pyruvate and β-hydroxybutyrate/acetoacetate are considered valuable tools to evaluate the in vivo redox cellular state by estimating the free NAD+/NADH in cytoplasm and mitochondria, respectively. The aim of the current study was to validate a gas-chromatography mass spectrometry method for simultaneous determination of the four metabolites in plasma and liver tissue. The procedure included an o-phenylenediamine microwave-assisted derivatization, followed by liquid-liquid extraction with ethyl acetate and silylation with bis(trimethylsilyl)trifluoroacetamide:trimethylchlorosilane 99:1. The calibration curves presented acceptable linearity, with a limit of quantification of 0.001 mM for pyruvate, β-hydroxybutyrate and acetoacetate and of 0.01 mM for lactate. The intra-day and inter-day accuracy and precision were within the European Medicines Agency’s Guideline specifications. No significant differences were observed in the slope coefficient of three-point standard metabolite-spiked curves in plasma or liver and water, and acceptable recoveries were obtained in the metabolite-spiked samples. Applicability of the method was tested in precision-cut liver rat slices and also in HepG2 cells incubated under different experimental conditions challenging the redox state. In conclusion, the validated method presented good sensitivity, specificity and reproducibility in the quantification of lactate/pyruvate and β-hydroxybutyrate/acetate metabolites and may be useful in the evaluation of in vivo redox states.

Funder

Instituto de Salud Carlos III

Dirección General de Investigación Científica y Técnica

European Regional Development Fund

National Natural Science Foundation of China

Wuyi University Funding

Guangdong Science and Technology Department

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3