Abstract
In order to overcome the vulnerability of the Global Navigation Satellite System (GNSS), the International Maritime Organization (IMO) initiated the ranging mode (R-Mode) of the automatic identification system (AIS) to provide resilient position data. As the existing AIS is a communication system, the number of shore stations as reference stations cannot satisfy positioning requirements. Especially in the area near a shore station, it is very common that a vessel can only receive signals from one shore station, where the traditional positioning method cannot be used. A novel position estimation method using multiple antennas on shipborne equipment is proposed here, which provides a vessel’s position even though the vessel can only receive signals from a single shore station. It is beneficial for solving positioning issues in proximity to the coast. Further, as the distances between different antennas to the shore station are not sufficiently independent, the positioning matrix can easily be near singularity or ill-conditioned; thus, an effective position solving method is derived. Furthermore, the proposed method is verified and evaluated in different scenarios by numerical simulation. We assessed the influencing factors of positioning performance, such as the vessel’s heading angle, the relative position, and the distances between the shore station and the vessel. The proposed method widely expands the application scope of the AIS R-Mode positioning system.
Funder
Chinese National Science Foundation
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference36 articles.
1. Adoption of amendments to the international convention to the safety of life at sea, 1974, as amended;Resolut. MSC,2006
2. http://www.imo.org/en/about/conventions/listofconventions/pages/international-convention-for-the-safety-of-life-at-sea-(solas),-1974.aspx
3. SOLAS 1974 Amendments,2000
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献