Crack Shape Coefficient: Comparison between Different DFOS Tools Embedded for Crack Monitoring in Concrete

Author:

Howiacki TomaszORCID,Sieńko RafałORCID,Bednarski Łukasz,Zuziak KatarzynaORCID

Abstract

The article presents research on the performance of different distributed fibre optic sensing (DFOS) tools, including both layered cables and monolithic composite sensors. The main need for the presented research was related to the growing applications of the DFOS techniques for the measurements of cracked concrete structures. There are no clear guidelines on the required parameters of the DFOS tools, which, despite their different designs, are offered for the same purpose (strain sensing). The state-of-the-art review and previous experiences show noticeable differences in the quality of the results depending on the applied DFOS tool. The technical construction of selected solutions was described with its theoretical consequences, and then laboratory tests on full-size reinforced concrete beams were discussed. Beams equipped with embedded tools were investigated in four-point bending tests, causing the formation of multiple cracks in the tension zone along the beams’ length. The results in the form of strain profiles registered by selected DFOS tools were analysed regarding the qualitative (crack detection) and quantitative (width estimation) crack assessment. The comparison between crack-induced strain profiles was based on a new parameter called crack shape coefficient CSC, which could be applied to assess the effectiveness of the particular DFOS tool in crack detection and analysis. It was one of the world’s first research allowing for such direct comparison between the layered and monolithic sensing tools. The summary indicates practical guidelines referring to the preferable design of the tools best suitable for crack measurements, as well as the field proofs based on data from two concrete bridges in Germany.

Funder

Cracow University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3