Crack monitoring on concrete structures with distributed fiber optic sensors—Toward automated data evaluation and assessment

Author:

Richter Bertram1ORCID,Herbers Max1ORCID,Marx Steffen1ORCID

Affiliation:

1. Technische Universität Dresden, Institute of Concrete Structures Dresden Germany

Abstract

AbstractThe ability to measure strains quasi‐continuously with high spatial resolution makes distributed fiber optic sensing a promising technology for structural health monitoring as it allows to locate and measure damages in concrete structures, such as cracks. Depending on whether the distributed fiber optic sensor (DFOS) is embedded into the concrete matrix or bonded to the reinforcement, different approaches for crack width calculation exist. The high spatial resolution of DFOS quickly leads to a large amount of data, especially with time continuous monitoring. Scalable, automated analysis approaches are required to handle such big data and to derive a gain in knowledge from the measurements. Thus, in a first step, the Python framework fosanalysis is presented and made available to other researchers or monitoring specialists as free software. The most important input parameters for crack width calculation are discussed for concrete strain and steel strain DFOS. Accurate crack monitoring for a 4 m long reinforced concrete beam is demonstrated by using fosanalysis. The calculated crack widths are in good agreement with digital image correlation measurements.

Publisher

Wiley

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3