Quinoa Snack Production at an Industrial Level: Effect of Extrusion and Baking on Digestibility, Bioactive, Rheological, and Physical Properties

Author:

Muñoz-Pabon Karen SofiaORCID,Roa-Acosta Diego FernandoORCID,Hoyos-Concha José Luis,Bravo-Gómez Jesús Eduardo,Ortiz-Gómez VicenteORCID

Abstract

This research aimed to produce gluten-free snacks on a pilot scale from quinoa flour. These snacks experienced an extrusion process, followed by baking. The effects of these technological processes on carbohydrate and protein digestibility, extractable phenolic compounds (EPP), hydrolyzable phenolic compounds (HPP), antioxidant capacity, and physical properties were evaluated in raw quinoa flour and extruded snacks. Extrusion increased digestible starch (RDS) from 7.33 g/100 g bs to 77.33 g /100 g bs. Resistant starch (RS) showed a variation of 2 g/100 g bs. It is noteworthy that protein digestibility increased up to 94.58 g/100 bs after extrusion and baking. These processes increased HPP content, while EPP and carotenoid content decreased. The samples showed significant differences (p < 0.05) in the antioxidant properties determined through the DPPH and ABTS methods. Values of 19.72 ± 0.81 µmol T/g were observed in snacks and 13.16 ± 0.2 µmol T/g in raw flour, but a reduction of up to 16.10 ± 0.68 µmol T/g was observed during baking. The baking process reduced the work of crispness (Wcr) from 0.79 to 0.23 N.mm, while the saturation (C*) was higher in baked ones, showing higher color intensity. The baking process did not influence the viscosity profile. The results in this study respond to the growing interest of the food industry to satisfy consumer demand for new, healthy, and expanded gluten-free snacks with bioactive compounds.

Funder

Colombian General Reimbursement System

University of Cauca

SEGALCO S.A.S.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3