Phycocyanin Protects against High Glucose High Fat Diet Induced Diabetes in Mice and Participates in AKT and AMPK Signaling

Author:

Hao Shuai,Li Fannian,Li Qiancheng,Yang Qi,Zhang Wenjing

Abstract

Phycocyanin is a type of marine natural product and functional food additive. Studies have demonstrated that phycocyanin has potential regulatory effects on glycometabolism, while its function and mechanism, especially in type 2 diabetes mellitus (T2DM), is still unclear. The aim of this study was to investigate the antidiabetic roles and underlying mechanism of phycocyanin in a high glucose high fat diet induced model of T2MD in C57BL/6N mice and a high-insulin-induced insulin-resistant model of SMMC-7721 cells. The results indicated that phycocyanin reduced high glucose high fat diet induced hyperglycemia as well as ameliorated glucose tolerance and histological changes in the liver and pancreas. Meanwhile, phycocyanin also significantly decreased the diabetes-induced abnormal serum biomarker variations, including triglyceride (TG), total cholesterol (TC), aspartate transaminase (AST), and glutamic-pyruvic transaminase (ALT), and increased the superoxide dismutase (SOD) content. Furthermore, the antidiabetic function of phycocyanin was exerted through activating the AKT and AMPK signaling pathway in the mouse liver, which was also verified in the insulin-resistant SMMC-7721 cells due to increased glucose uptake and activated AKT and AMPKα expression. Thus, the present study is the first to indicate that phycocyanin mediates antidiabetic function via activating the AKT and AMPK pathway in high glucose high fat diet induced T2DM mice and insulin-resistant SMMC-7721 cells, which lays a scientific theoretical basis for the potential treatment of diabetes and the utilization of marine natural products.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference41 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3