Integrated Analysis of Long Non-Coding RNA and mRNA to Reveal Putative Candidate Genes Associated with Backfat Quality in Beijing Black Pig

Author:

Liu Xin,Tian Weilong,Wang Ligang,Zhang Longchao,Liang JingORCID,Wang Lixian

Abstract

Pigs’ backfat quality has an important impact on the quality of pork and pork products and has a strong relationship with nutrition and sensory characteristics. This study aimed to identify the related candidate genes of backfat quality and to preliminary clarify the molecular regulatory mechanism underlying pig backfat quality phenotypes. Expression assessments of long non-coding RNA (lncRNA) and mRNA profiling in backfat from high-quality (firm and white) and low-quality (soft and yellow) Beijing Black pigs were performed by RNA sequencing. Significantly different expressions were observed in 610 protein-coding genes and 290 lncRNAs between the two groups. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway annotation showed that some candidate differentially expressed genes that participate in lipid-related pathways and pigmentation terms may play a role in backfat quality in pigs. The cis-target and trans-target genes were predicted to explore the regulatory function of lncRNAs, and integrative analyses of different expression lncRNAs targets and different expression genes were performed. The results showed the regulatory networks of lncRNA-mRNA related to backfat quality, and our study obtained strong candidate genes for backfat quality: ELOVL5, SCD, DGAT2, SLC24A5, and TYRP1, which were involved in fat metabolism, adipogenesis regulation, and pigmentation. To our knowledge, this study is the first to demonstrate the molecular genetic mechanisms of backfat quality in pigs, and these findings improve the current understanding of backfat quality mechanisms and provide a foundation for further studies.

Funder

National Key R&D Program of China

Agricultural Science and Technology Innovation Project

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3