Study on the Identification and Detection of Walnut Quality Based on Terahertz Imaging

Author:

Hu JunORCID,Shi Hongyang,Zhan Chaohui,Qiao Peng,He YongORCID,Liu YandeORCID

Abstract

Objective: Walnuts have rich nutritional value and are favored by the majority of consumers. As walnuts are shelled nuts, they are prone to suffer from defects such as mildew during storage. The fullness and mildew of the fruit impose effects on the quality of the walnuts. Therefore, it is of great economic significance to carry out a study on the rapid, non-destructive detection of walnut quality. Methods: Terahertz spectroscopy, with wavelengths between infrared and electromagnetic waves, has unique detection advantages. In this paper, the rapid and nondestructive detection of walnut mildew and fullness based on terahertz spectroscopy is carried out using the emerging terahertz transmission spectroscopy imaging technology. First, the normal walnuts and mildewed walnuts are identified and analyzed. At the same time, the image processing is carried out on the physical samples with different kernel sizes to calculate the fullness of the walnut kernels. The THz image of the walnuts is collected to extract the spectral information in different regions of interest. Four kinds of time domain signals in different regions of interest are extracted, and three qualitative discrimination models are established, including the support vector machine (SVM), random forest (RF), and k-nearest neighbor (KNN) algorithms. In addition, in order to realize the visual expression of walnut fullness, the terahertz images of the walnut are segmented with a binarization threshold, and the walnut fullness is calculated by the proportion of the shell and kernel pixels. Results: In the frequency domain signal, the amplitude intensity from high to low is the mildew sample, walnut kernel, and walnut shell, and the distinction between walnut kernel, shell samples, and mildew samples is high. The overall identification accuracy of the aforementioned three models is 90.83%, 97.38%, and 97.87%, respectively. Among them, KNN has the best qualitative discrimination effect. In a single category, the recognition accuracy of the model for the walnut kernel, walnut shell, mildew sample, and reference group (background) reaches 94%, 100%, 97.43%, and 100%, respectively. The terahertz transmission images of the five categories of walnut samples with different kernel sizes are processed to visualize the detection of kernel fullness inside walnuts, and the errors are less than 5% compared to the actual fullness of walnuts. Conclusion: This study illustrates that terahertz spectroscopy detection can achieve the detection of walnut mildew, and terahertz imaging technology can realize the visual expression and fullness calculation of walnut kernels. Terahertz spectroscopy and imaging provides a non-destructive detection method for walnut quality, which can provide a reference for the quality detection of other dried nuts with shells, thus having significant practical value.

Funder

National Natural Science Foundation of China

National Science and Technology Award Reserve Project Cultivation Program

Technology Research Project of Jiangxi Education Department

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3