An Exploration of Pepino (Solanum muricatum) Flavor Compounds Using Machine Learning Combined with Metabolomics and Sensory Evaluation

Author:

Sun Zhu,Zhao Wenwen,Li Yaping,Si Cheng,Sun Xuemei,Zhong Qiwen,Yang Shipeng

Abstract

Flavor is one of the most important characteristics that directly determines the popularity of a food. Moreover, the flavor of fruits is determined by the interaction of multiple metabolic components. Pepino, an emerging horticultural crop, is popular for its unique melon-like flavor. We analyzed metabolomics data from three different pepino growing regions in Haidong, Wuwei, and Jiuquan and counted the status of sweetness, acidity, flavor, and overall liking ratings of pepino fruit in these three regions by sensory panels. The metabolomics and flavor ratings were also integrated and analyzed using statistical and machine learning models, which in turn predicted the sensory panel ratings of consumers based on the chemical composition of the fruit. The results showed that pepino fruit produced in the Jiuquan region received the highest ratings in sweetness, flavor intensity, and liking, and the results with the highest contribution based on sensory evaluation showed that nucleotides and derivatives, phenolic acids, amino acids and derivatives, saccharides, and alcohols were rated in sweetness (74.40%), acidity (51.57%), flavor (56.41%), and likability (33.73%) dominated. We employed 14 machine learning strategies trained on the discovery samples to accurately predict the outcome of sweetness, sourness, flavor, and liking in the replication samples. The Radial Sigma SVM model predicted with better accuracy than the other machine learning models. Then we used the machine learning models to determine which metabolites influenced both pepino flavor and consumer preference. A total of 27 metabolites most important for pepino flavor attributes to distinguish pepino originating from three regions were screened. Substances such as N-acetylhistamine, arginine, and caffeic acid can enhance pepino‘s flavor intensity, and metabolites such as glycerol 3-phosphate, aconitic acid, and sucrose all acted as important variables in explaining the liking preference. While glycolic acid and orthophosphate inhibit sweetness and enhance sourness, sucrose has the opposite effect. Machine learning can identify the types of metabolites that influence fruit flavor by linking metabolomics of fruit with sensory evaluation among consumers, which conduces breeders to incorporate fruit flavor as a trait earlier in the breeding process, making it possible to select and release fruit with more flavor.

Funder

Qinghai Natural Science Foundation Program—Innovation team

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference72 articles.

1. The pepino(Solanum muricatum, Solanaceae): A “New” crop with a history

2. Pepino extract (Solanum muricatum Ait.) on HDL and LDL in type 2 diabetic rats

3. Solanum Muricatum Ait. Inhibits Inflammation and Cancer by Modulating the Immune System;Shathish;J. Cancer Res. Ther.,2014

4. Relación Del Descubrimiento y Conquista de Los Reinos Del Perú;Pizarro,1986

5. Recolección de Especies Hortícolas En Ecuador;Nuez;Plant Genet. Resour. Newsl.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3