Application of Imaging and Artificial Intelligence for Quality Monitoring of Stored Black Currant (Ribes nigrum L.)

Author:

Ropelewska EwaORCID

Abstract

The objective of this study was to assess the influence of storage under different storage conditions on black currant quality in a non-destructive and inexpensive manner using image processing and artificial intelligence. Black currants were stored at a room temperature of 20 ± 1 °C and a temperature of 3 °C (refrigerator). The images of black currants directly after harvest and fruit stored for one and two weeks were obtained using a digital camera. Then, texture parameters were computed from the images converted to color channels R (red), G (green), B (blue), L (lightness component from black to white), a (green for negative and red for positive values), b (blue for negative and yellow for positive values), X (component with color information), Y (lightness), and Z (component with color information). Models for the classification of black currants were built using various machine learning algorithms based on selected textures for RGB, Lab, and XYZ color spaces. Models built using the IBk, multilayer perceptron, and multiclass classifier for textures from RGB color space, and the IBk algorithm for textures from Lab color space distinguished unstored black currants and samples stored in the room for one and two weeks with an average accuracy of 100%, and the kappa statistic and weighted averages of precision, recall, Matthews correlation coefficient (MCC), receiver operating characteristic (ROC) area, and precision–recall (PRC) area equal to 1.000. This indicated a very distinct change in the external structure of the fruit after the first week and more and more visible changes in quality with increasing storage time. A classification accuracy reaching 98.67% (multilayer perceptron, Lab color space) for the samples stored in the refrigerator may indicate smaller quality changes caused by storage at a low temperature. The approach combining image textures and artificial intelligence turned out to be promising to monitor the quality changes in black currants during storage.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3