An Alkyne-Mediated SERS Aptasensor for Anti-Interference Ochratoxin A Detection in Real Samples

Author:

Wang Hao,Chen Lu,Li Min,She YongxinORCID,Zhu Chao,Yan Mengmeng

Abstract

Avoiding interference and realizing the precise detection of mycotoxins in complex food samples is still an urgent problem for surface-enhanced Raman spectroscopy (SERS) analysis technology. Herein, a highly sensitive and specific aptasensor was developed for the anti-interference detection of Ochratoxin A (OTA). In this aptasensor, 4-[(Trimethylsilyl) ethynyl] aniline was employed as an anti-interference Raman reporter to prove a sharp Raman peak (1998 cm−1) in silent region, which could avoid the interference of food bio-molecules in 600–1800 cm−1. 4-TEAE and OTA-aptamer were assembled on Au NPs to serve as anti-interference SERS probes. Meanwhile, Fe3O4 NPs, linked with complementary aptamer (cApts), were applied as capture probes. The specific binding of OTA to aptamer hindered the complementary binding of aptamer and cApt, which inhibited the binding of SERS probes and capture probes. Hence, the Raman responses at 1998 cm−1 were negatively correlated with the OTA level. Under the optimum condition, the aptasensor presented a linear response for OTA detection in the range of 0.1–40 nM, with low detection limits of 30 pM. In addition, the aptasensor was successfully applied to quantify OTA in soybean, grape and milk samples. Accordingly, this anti-interference aptasensor could perform specific, sensitive and precise detection of OTA in real samples, and proved a reliable reference strategy for other small-molecules detection in food samples.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Beijing Association for Science and Technology, the Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences

Focus on Research and Development Plan in Shandong Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3