Prediction of the Physical Properties of a Structural Member by the Impact Hammer Test

Author:

Lee Eun-Taik,Hong Yu-Sik,Eun Hee-ChangORCID

Abstract

The frequency response function (FRF) in the frequency domain is a black box used to collect physical information and to indicate the modal characteristics of a dynamic system. Analyzing the collected FRF data through the impact hammer test, dynamic parameters, such as stiffness, mass, and the damping matrix, can be estimated. By extracting and analyzing the FRFs within certain ranges of the lowest few resonance frequencies, this study presents a nondestructive method to estimate the dynamic parameters and the material properties. Updating of the dynamic parameters and material properties is a crucial process for the subsequent design and maintenance. This study presents a method to estimate the physical properties of structural members using measured FRF data and generalized inverse. By extracting and analyzing the FRFs within certain ranges of the lowest few resonance frequencies, the dynamic parameters were predicted. It was observed in numerical experiments that the proposed method could properly estimate the elastic modulus and dynamic parameters of steel beams, although the results were affected by the extracted FRF ranges. The physical properties were close to more accurate values in taking the FRFs at more resonance frequencies, as the member was flexible. The proposed method was also extended to a nondestructive test for an estimation of the compressive strength of concrete. However, it faced difficulty due to the external noise contained in the measured data. It was found sin the nondestructive test that the proposed technique was affected by external noise, unlike a simple steel beam. The concrete strength could be predicted by taking the FRFs in a wide frequency range containing the lowest two resonance frequencies and by averaging the repeated test results.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference33 articles.

1. An overview of system identification methods and applications part II: Theroy, type of tested structures, history and prospective of system identification;Ghafooripour;Proceedings of the 4th International Conference on Coasts, Ports & Marine Structure,2000

2. System Identification Methods for (Operational) Modal Analysis: Review and Comparison

3. Low-Cost Wireless Structural Health Monitoring of Bridges

4. A data-based structural health monitoring approach for damage detection in steel bridges using experimental data

5. Big Data Analytics and Structural Health Monitoring: A Statistical Pattern Recognition-Based Approach

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3