Abstract
AbstractThere is a need for reliable structural health monitoring (SHM) systems that can detect local and global structural damage in existing steel bridges. In this paper, a data-based SHM approach for damage detection in steel bridges is presented. An extensive experimental study is performed to obtain data from a real bridge under different structural state conditions, where damage is introduced based on a comprehensive investigation of common types of steel bridge damage reported in the literature. An analysis approach that includes a setup with two sensor groups for capturing both the local and global responses of the bridge is considered. From this, an unsupervised machine learning algorithm is applied and compared with four supervised machine learning algorithms. An evaluation of the damage types that can best be detected is performed by utilizing the supervised machine learning algorithms. It is demonstrated that relevant structural damage in steel bridges can be found and that unsupervised machine learning can perform almost as well as supervised machine learning. As such, the results obtained from this study provide a major contribution towards establishing a methodology for damage detection that can be employed in SHM systems on existing steel bridges.
Funder
NTNU Norwegian University of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Safety, Risk, Reliability and Quality,Civil and Structural Engineering
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献