An Efficient 2.5D Shadow Detection Algorithm for Urban Planning and Design Using a Tensor Based Approach

Author:

Bhattacharya SukritiORCID,Braun ChristianORCID,Leopold UlrichORCID

Abstract

Urbanization is leading us to a more chaotic state where healthy living becomes a prime concern. The high-rise buildings influence the urban setting with a high shadow rate on surroundings that can have no positive impact on the general neighborhood. Nevertheless, shadows are the main factor of defeatist virtual settings, they are expensive to render in real-time. This paper investigates how the amount of sunlight varies by season and how seasons can indicate the time of year to understand how shadows vary in length at different times of the day and how they change over the seasons. We propose a novel efficient (fast and scalable) algorithm to calculate a 2.5D cast-shadow map from a given LiDAR-derived Digital Surface Model (DSM). We present a proof-of-concept demonstration to examine the technical practicability of the introduced algorithm. Tensor-based techniques such as singular value decomposition, tensor unfolding are examined and deployed to represent the multidimensional data. The proposed method exploits horizon mapping ideas and extends the method to a modern graphics algorithm (Bresenham’s line drawing algorithm) to account for the DSM’s underlying surface geometry. A proof-of-concept is developed utilizing Python’s TensorFlow library, exploring data flow graphs and the tensor data structure. The heavy computer graphics algorithm used in this paper is parallelized using PySpark. Results explicate significant enhancements in overall performance while preserving accuracy at negligible variations.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3