Constraining the Geometry of NeRFs for Accurate DSM Generation from Multi-View Satellite Images

Author:

Wan Qifeng1,Guan Yuzheng1,Zhao Qiang1,Wen Xiang1ORCID,She Jiangfeng12ORCID

Affiliation:

1. Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Key Laboratory for Land Satellite Remote Sensing Applications of Ministry of Natural Resources, School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China

2. Jiangsu Center for Collaborative Innovation in Novel Software Technology and Industrialization, Nanjing University, Nanjing 210023, China

Abstract

Neural Radiance Fields (NeRFs) are an emerging approach to 3D reconstruction that use neural networks to reconstruct scenes. However, its applications for multi-view satellite photogrammetry, which aim to reconstruct the Earth’s surface, struggle to acquire accurate digital surface models (DSMs). To address this issue, a novel framework, Geometric Constrained Neural Radiance Field (GC-NeRF) tailored for multi-view satellite photogrammetry, is proposed. GC-NeRF achieves higher DSM accuracy from multi-view satellite images. The key point of this approach is a geometric loss term, which constrains the scene geometry by making the scene surface thinner. The geometric loss term alongside z-axis scene stretching and multi-view DSM fusion strategies greatly improve the accuracy of generated DSMs. During training, bundle-adjustment-refined satellite camera models are used to cast rays through the scene. To avoid the additional input of altitude bounds described in previous works, the sparse point cloud resulting from the bundle adjustment is converted to an occupancy grid to guide the ray sampling. Experiments on WorldView-3 images indicate GC-NeRF’s superiority in accurate DSM generation from multi-view satellite images.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3