Soil Contaminated with Hazardous Waste Materials at Rio Tinto Mine (Spain) Is a Persistent Secondary Source of Acid and Heavy Metals to the Environment

Author:

Fernández-Landero Sandra1ORCID,Fernández-Caliani Juan Carlos1ORCID,Giráldez María Inmaculada2ORCID,Morales Emilio2,Barba-Brioso Cinta3ORCID,González Isabel3

Affiliation:

1. Department Earth Sciences, University of Huelva, 21071 Huelva, Spain

2. Department Chemistry, University of Huelva, 21071 Huelva, Spain

3. Department Crystallography, Mineralogy and Agricultural Chemistry, University of Seville, 41071 Seville, Spain

Abstract

Mineralogical analysis and laboratory-based leaching tests coupled with speciation modeling were undertaken to quantify the potential for short-term acid generation and the release of trace elements from soils heavily contaminated with mine waste at Rio Tinto. Three different waste materials were considered as case studies: roasted pyrite, copper slags, and leached sulfide ores. The results showed elevated values of net acid generation (up to 663 mmol H+/kg), the major pools being potential sulfidic acidity and acidity retained in jarosite. Remarkable contents of As and toxic heavy metals were found especially in the slag-contaminated soil. Copper, Zn, and Pb were the most abundant metals in the acid leach solutions resulting from mine soil-water interaction, with peak values of 55.6 mg L−1, 2.77 mg L−1, and 2.62 mg L−1, respectively. Despite the high total contents of trace elements occurring in soil, the mobile fraction was limited to maximum release values of 12.60% for Cd and 10.27% for Cu, according to the test leaching. Speciation calculations indicated that free metal ions (M2+) and sulfate species (MSO40) accounted for most of the dissolved load. Acid soil drainage is a secondary source of acid and heavy metals in the mine site and, therefore, an effective land reclamation program should ensure that acidity and metal mobility are reduced to environmentally sustainable levels.

Funder

Regional Government of Andalusia

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3