Revalorisation of Fine Recycled Concrete in Acid Mine Water Treatment: A Challenge to a Circular Economy

Author:

Barba-Brioso Cinta1ORCID,Martín Domingo1ORCID,Romero-Baena Antonio1,Campos Paloma1ORCID,Delgado Joaquín1ORCID

Affiliation:

1. Department of Crystallography, Mineralogy and Agricultural Chemistry, University of Seville, 41071 Seville, Spain

Abstract

Currently, only 50% of concrete produced from construction and demolition waste is being recycled in Europe. This falls short of the European Union’s target of 70% by 2020. Moreover, this figure only considers coarse fractions (>4 mm), as technical issues arise when using fine fractions. In pursuit of a complete circular life for recycled concrete, this investigation explores the potential use of fine fractions to enhance the physicochemical conditions and reduce the element concentration of acid mine drainage. Two trickling sets were prepared using a filter holder, with acidic waters passing through a layer of recycled concrete aggregates. Results revealed an immediate increase in water pH to neutral levels, a reduction in solution oxidation, and the complete, or near-complete retention, of potentially toxic elements by the substrate (with retention percentages of over 99.9% for Al and Fe, between 43.1% and 61.1% for S, over 91.1% for Zn, and over 99.1% for Cu). The experiment also showed a significant increase in Ca levels (tripling the initial value) and some Mg in the water, which could promote the subsequent precipitation of carbonates and the retention of trace metals. In summary, this study demonstrates the effectiveness of using recycled concrete aggregates in a laboratory setting. Further investigation is necessary to evaluate the feasibility of implementing this technique at the pilot scale.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3