3-D Multi-Component Reverse Time Migration Method for Tunnel Seismic Data

Author:

Guan Peng,Shao Cuifa,Jiao Yuyong,Zhang Guohua,Li Bin,Zhou Jie,Huang Pei

Abstract

Migration imaging is a key step in tunnel seismic data processing. Due to the limitation of tunnel space, tunnel seismic data are small-quantity, multi-component, and have a small offset. Kirchhoff migration based on the ray theory is limited to the migration aperture and has low migration imaging accuracy. Kirchhoff migration can no longer meet the requirements of high-precision migration imaging. The reverse time migration (RTM) method is used to realize cross-correlation imaging by reverse-time recursion principle of the wave equation. The 3-D RTM method cannot only overcome the effect of small offset, but also realize multi-component data imaging, which is the most accurate migration method for tunnel seismic data. In this paper, we will study the 3-D RTM method for multi-component tunnel seismic data. Combined with the modeled data and the measured data, the imaging accuracy of the 3-D Kirchhoff migration and 3-D RTM is analyzed in detail. By comparing single-component and multi-component Kirchhoff migration and RTM profile, the advantages of the multi-component RTM method are summarized. Compared with the Kirchhoff migration method, the 3-D RTM method has the following advantages: (1) it can overcome the effect of small offset and expand the range of migration imaging; (2) multi-component data can be realized to improve the energy of anomalous interface; (3) it can make full use of multiple waves to realize migration imaging and improve the resolution of the anomalous interface. The modeled data and the measured data prove the advantages of the 3-D multi-component RTM method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3