Shock-Capturing Boussinesq Modelling of Broken Wave Characteristics Near a Vertical Seawall

Author:

Liu WeijieORCID,Ning Yue,Zhang Yao,Zhang Jiandong

Abstract

Broken wave characteristics in front of a vertical seawall were modeled and studied using a shock-capturing Boussinesq wave model FUNWAVE-TVD. Validation with the experimental data confirmed the capability of FUNWAVE-TVD in predicting the wave characteristics via the shock-capturing method. Compared to the results obtained from the Boussinesq model coupled with an empirical breaking model, the advantage of the present shock-capturing model for the broken waves near a vertical seawall was clearly revealed. A preliminary investigation of the effects of the key parameters, such as the incident wave height, water level at the seawall, and seabed slope, on the wave kinematics (i.e., the root mean square of the surface fluctuations and depth-averaged horizontal velocity) near the seawall was then conducted through a series of numerical experiments. The numerical results indicate the incident wave height and the water depth at the seawall are the important parameters in determining the magnitude of the wave kinematics, while the effect of the seabed slope seems to be insignificant. The role of the breaking point locations is also highlighted in this study, in which case further breaking can reduce the wave kinematics significantly for the coastal structures predominately subjected to broken waves.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3