Numerical Simulation of Wave Runup and Overtopping for Short and Long Waves Using Staggered Grid Variational Boussinesq

Author:

Adytia Didit1,Pudjaprasetya Sri Redjeki2

Affiliation:

1. School of Computing, Telkom University, Jl. Telekomunikasi, No. 01, Terusan Buah Batu, Bandung 40257, Indonesia

2. Industrial and Financial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha, No. 10, Bandung 40132, Indonesia

Abstract

In designing a numerical tool for simulating a wide variety of water waves, i.e. short to long waves, an accurate and robust wave model and numerical implementation are needed. Dispersion and nonlinearity are the two most important physical aspects that should be modeled accurately. To be applicable to simulate many coastal engineering applications, the numerical scheme should be capable of simulating wave runup and overtopping. In this paper, we extend the capability of a Boussinesq-type model called Variational Boussinesq (VB) model for simulating the runup and overtopping of water waves. To that end, the vertical layer of the fluid is modeled continuously by a linear combination of three functions. If two of these three functions have been incorporated in the previous numerical approximation called the SVB model, this paper discusses the improvement of SVB model by incorporating all the three functions. This approach improve the dispersive property of the SVB model due to its ability to simulate short waves up to kd = 20, compared to the previous model which was only up to kd = 7, where k denotes wave number and d water depth. Furthermore, the model is implemented numerically by using the staggered conservative scheme. In the new implementation, the model is switched to the non-dispersive Shallow Water Equations (SWE) when dealing with a dry area for runup and overtopping phenomena. The new implementation is tested against analytical solutions of soliton propagation and standing wave phenomenon; moreover, it is also tested against experimental data from hydrodynamic laboratories for simulating solitary wave breaking above a sloping bottom, composite beach, and in a structure for simulating overtopping phenomenon. The implementation is also tested against experimental data for simulating irregular wave propagation and runup above a fringing reef. The results of numerical simulation agree quite well with experimental data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3