Abstract
Recent years have seen rapid progress in target-detection missions, whereas small targets, dense target distribution, and shadow occlusion continue to hinder progress in the detection of small targets, such as cars, in remote sensing images. To address this shortcoming, we propose herein a backbone feature-extraction network called “RepDarkNet” that adds several convolutional layers to CSPDarkNet53. RepDarkNet considerably improves the overall network accuracy with almost no increase in inference time. In addition, we propose a multi-scale cross-layer detector that significantly improves the capability of the network to detect small targets. Finally, a feature fusion network is proposed to further improve the performance of the algorithm in the AP@0.75 case. Experiments show that the proposed method dramatically improves detection accuracy, achieving AP = 75.53% for the Dior-vehicle dataset and mAP = 84.3% for the Dior dataset, both of which exceed the state-of-the-art level. Finally, we present a series of improvement strategies that justifies our improvement measures.
Funder
National Basic Research Program of China
the Major Project of Science and Technology of Henan Province
National Natural Science Foundation of China
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献