Small Object Detection in Medium–Low-Resolution Remote Sensing Images Based on Degradation Reconstruction

Author:

Zhao Yongxian12,Sun Haijiang1,Wang Shuai1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

With the continuous development of space remote sensing technology, the spatial resolution of visible remote sensing images has been continuously improved, which has promoted the progress of remote sensing target detection. However, due to the limitation of sensor lattice size, it is still challenging to obtain a large range of high-resolution (HR) remote sensing images in practical applications, which makes it difficult to carry out target monitoring in a large range of areas. At present, many object detection methods focus on the detection and positioning technology of HR remote sensing images, but there are relatively few studies on object detection methods using medium- and low-resolution (M-LR) remote sensing images. Because of its wide coverage area and short observation period, M-LR remote sensing imagery is of great significance for obtaining information quickly in space applications. However, the small amount of fine-texture information on objects in M-LR images brings great challenges to detection and recognition tasks. Therefore, we propose a small target detection method based on degradation reconstruction, named DRADNet. Different from the previous methods that use super resolution as a pre-processing step and then directly input the image into the detector, we have designed an additional degenerate reconstruction-assisted framework to effectively improve the detector’s performance in detection tasks with M-LR remote sensing images. In addition, we introduce a hybrid parallel-attention feature fusion module in the detector to achieve focused attention on target features and suppress redundant complex backgrounds, thus improving the accuracy of the model in small target localization. The experimental results are based on the widely used VEDAI dataset and Airbus-Ships dataset, and verify the effectiveness of our method in the detection of small- and medium-sized targets in M-LR remote sensing images.

Funder

Changchun Science and Technology Bureau

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3