Carbon-Assisted Bioleaching of Chalcopyrite and Three Chalcopyrite/Enargite-Bearing Complex Concentrates

Author:

Oyama Keishi,Takamatsu Kyohei,Hayashi Kaito,Aoki Yuji,Kuroiwa Shigeto,Hirajima Tsuyoshi,Okibe Naoko

Abstract

Overcoming the slow-leaching kinetics of refractory primary copper sulfides is crucial to secure future copper sources. Here, the effect of carbon was investigated as a catalyst for a bioleaching reaction. First, the mechanism of carbon-assisted bioleaching was elucidated using the model chalcopyrite mineral, under specified low-redox potentials, by considering the concept of Enormal. The carbon catalyst effectively controlled the Eh level in bioleaching liquors, which would otherwise exceed its optimal range (0 ≤ Enormal ≤ 1) due to active regeneration of Fe3+ by microbes. Additionally, Enormal of ~0.3 was shown to maximize the carbon-assisted bioleaching of the model chalcopyrite mineral. Secondly, carbon-assisted bioleaching was tested for three types of chalcopyrite/enargite-bearing complex concentrates. A trend was found that the optimal Eh level for a maximum Cu solubilization increases in response to the decreasing chalcopyrite/enargite ratio in the concentrate: When chalcopyrite dominates over enargite, the optimal Eh was found to satisfy 0 ≤ Enormal ≤ 1. As enargite becomes more abundant than chalcopyrite, the optimal Eh for the greatest Cu dissolution was shifted to higher values. Overall, modifying the Eh level by adjusting AC doses to maximize Cu solubilization from the concentrate of complex mineralogy was shown to be useful.

Funder

Japan Oil, Gas and Metals National Corporation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3