Bioleaching of Enargite/Pyrite-rich “Dirty” Concentrate and Arsenic Immobilization

Author:

Okibe Naoko,Hayashi Kaito,Oyama Keishi,Shimada Kazuhiko,Aoki Yuji,Suwa Takahiro,Hirajima Tsuyoshi

Abstract

Bioleaching of arsenic (As)-rich, so-called “dirty” concentrates can produce additional Cu value from the flotation waste while simultaneously releasing toxic As. This study bioleached three such concentrates of varying pyrite/enargite ratios ([Py]/[Ena] = 0.7, 1.3 and 2.4) at a pulp density of 20%. The dissolution behavior of Cu and As in relation to the solution redox potential (Eh) was studied with and without activated carbon (AC) as a potential Eh-controlling catalyst. At this high pulp density, Eh was naturally suppressed, without a need for AC dosing, to <700 mV (a rapid pyrite dissolution is prevented in this Eh range). The effect of AC dosing on Eh varied depending on the type of concentrate; Eh was further reduced only in the case of the most enargite-rich concentrate, DC-I. Among the three concentrates, the highest Cu dissolution (35%) was seen in DC-I (without AC dosing), which simultaneously achieved the lowest As solubilization. Arsenic was immobilized as amorphous precipitates, likely in a mixture of ferric arsenate, cupric arsenate, basic ferric sulfate and sulfur. Arsenic immobilization became increasingly ineffective as the pyrite content increased in the concentrate. Based on these results, setting a lower [Py]/[Ena] ratio prior to the dirty concentrate bioleaching could be a useful approach to promote Cu dissolution and As immobilization simultaneously.

Funder

Japan Oil Gas and Metals National Corporation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference28 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3