Automated Gold Grain Counting. Part 1: Why Counts Matter!

Author:

Girard RéjeanORCID,Tremblay Jonathan,Néron Alexandre,Longuépée HuguesORCID

Abstract

The quantitative and qualitative assessment of gold grains from samples of glacial till is a well-established method for exploring gold deposits hidden under glaciated cover. This method, which is widely used in the industry and has resulted in numerous successes in locating gold deposits in glaciated terrain, is still based on artisanal gravity separation techniques and visual identification. However, being artisanal, it is limited by inconsistent recoveries and difficulties associated with visually identifying the predominantly small gold grains. These limitations hinder its capacity to decipher subtle or complex signals. To improve detection limits through the recovery of small gold grains, a new approach has recently been introduced into the industry, which is commercially referred to as the “ARTGold” procedure. This procedure involves the use of an optimized miniature sluice box coupled with an automated scanning electron microscopy routine. The capabilities of this improved method were highlighted in this study by comparing till surveys conducted around the Borden gold deposit (Ontario, Canada) using the conventional and improved methods at both local and regional scales. Relative to that with the conventional approach, the improved method increased the recovery of gold grains from samples (regional and down-ice mineralization) by almost one order of magnitude. (regional and down-ice mineralization), dominantly in regard of the small size fractions. Increasing the counts in low-abundance regional samples allows for a better discrimination between background signals and significant dispersions. The described method offers an alternative for improving the characterization of gold dispersal in glaciated terrain and related gold deposit footprints.

Funder

Fonds de recherche du Québec – Nature et technologies

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3