Obtaining an Equiaxed Ultrafine-Grained State of the Longlength Bulk Zirconium Alloy Bars by Extralarge Shear Deformations with a Vortex Metal Flow

Author:

Arbuz Alexandr1,Kawalek Anna2ORCID,Ozhmegov Kirill2ORCID,Panin Evgeniy3,Magzhanov Medet4,Lutchenko Nikita1ORCID,Yurchenko Vasily4

Affiliation:

1. Core Facilities Department, AEO Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan

2. Metal Forming Department, Częstochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-201 Częstochowa, Poland

3. Metal Forming Department, Karaganda Industrial University, 30 Republic Ave, Temirtau 101400, Kazakhstan

4. Mechanical Engineering Department, Abylkas Saginov Karaganda Technical University, 56 Nursultan Nazarbayev Ave, Karaganda 100027, Kazakhstan

Abstract

The method of radial shear rolling makes it possible to achieve comparable to high pressure torsion (HPT) method ultrahigh degrees of total strain level in combination with the vortex metal flow character for long-length large bulk bars unable by HPT and many other processes of sever plastic deformation (SPD). Sequential rolling of the Zr-1%Nb alloy was carried out under extreme conditions on two radial shear rolling mills with a total diameter reduction ε = 185% and a maximum total strain level = 46 mm/mm. The strain level and its cross-section distribution assessment by finite element method (FEM) simulation was studied. The final bar cross-section structure type distribution detailed study 1 mm resolution by electron back scatter diffraction (EBSD) mapping was performed. A gradient structure with a predominance of the equiaxed ultrafine-grained (UFG) state was found. The deformation level rising did not allow to refine it in the periphery zone more than that obtained nearly middle of the processing, but it allows for significant change in the axial zone structure. The additional large warm deformations by radial shear rolling have no additional grain refinement effect for already 300–600 nm refined zone. An equiaxed UFG structure was obtained in a relatively large volume of the sample with a reduced gradient towards the non-UFG center zone in regard to known works.

Funder

Ministry of Education and Science of Republic of Kazakhstan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3