Design of Refractory Alloys for Desired Thermal Conductivity via AI-Assisted In-Silico Microstructure Realization

Author:

Seyed Mahmoud Seyed Mohammad Ali1,Faraji Ghader1,Baghani Mostafa1ORCID,Hashemi Mohammad Saber2ORCID,Sheidaei Azadeh2ORCID,Baniassadi Majid1

Affiliation:

1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 15614, Iran

2. Aerospace Engineering Department, Iowa State University, Ames, IA 50011, USA

Abstract

A computational methodology based on supervised machine learning (ML) is described for characterizing and designing anisotropic refractory composite alloys with desired thermal conductivities (TCs). The structural design variables are parameters of our fast computational microstructure generator, which were linked to the physical properties. Based on the Sobol sequence, a sufficiently large dataset of artificial microstructures with a fixed volume fraction (VF) was created. The TCs were calculated using our previously developed fast Fourier transform (FFT) homogenization approach. The resulting dataset was used to train our optimal autoencoder, establishing the intricate links between the material’s structure and properties. Specifically, the trained ML model’s inverse design of tungsten-30% (VF) copper with desired TCs was investigated. According to our case studies, our computational model accurately predicts TCs based on two perpendicular cut-section images of the experimental microstructures. The approach can be expanded to the robust inverse design of other material systems based on the target TCs.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3