Static Globularization Behavior and Artificial Neural Network Modeling during Post-Annealing of Wedge-Shaped Hot-Rolled Ti-55511 Alloy

Author:

Xu Liguo1,Shi Shuangxi1,Kong Bin2,Luo Deng3,Zhang Xiaoyong1,Zhou Kechao1

Affiliation:

1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

2. Hunan Xuangtou Goldsky Titanium Metal Co., Ltd., Changsha 410221, China

3. Xiangtan Iron & Steel Group Co., Ltd., Xiangtan 411104, China

Abstract

The globularization of the lamellar α phase by thermomechanical processing and subsequent annealing contributes to achieving the well-balanced strength and plasticity of titanium alloys. A high-throughput experimental method, wedge-shaped hot-rolling, was designed to obtain samples with gradient true strain distribution of 0~1.10. The samples with gradient strain distribution were annealed to obtain the gradient distribution of globularized α phase, which could rapidly assess the globularization fraction of α phase under different conditions. The static globularization behavior under various parameters was systematically studied. The applied prestrain provided the necessary driving force for static globularization during annealing. The substructure evolution and the boundary splitting occurred mainly at the early stage of annealing. The termination migration and the Ostwald ripening were dominant in the prolonged annealing. A backpropagation artificial neural network (BP-ANN) model for static globularization was developed, which coupled the factors of prestrain, annealing temperature, and annealing time. The average absolute relative errors (AARE) for the training and validation set are 3.17% and 3.22%, respectively. Further sensitivity analysis of the factors shows that the order of relative importance for static globularization is annealing temperature, prestrain and annealing time. The developed BP-ANN can precisely predict the static globularization kinetic curves without overfitting.

Funder

National Natural Science Foundation of China

Innovative Province Construction Special Project of Hunan Province

Technology Research Project of Hunan Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3