Investigation of the Tribological Behaviour of Various AMC Surfaces against Brake Lining Material

Author:

Hirsch Sarah Johanna1ORCID,Eiselt Patrick2ORCID,Ozdemir Ismail1ORCID,Grund Thomas1,Nestler Andreas2ORCID,Lampke Thomas1ORCID,Schubert Andreas2ORCID

Affiliation:

1. Materials and Surface Engineering Group, Institute of Materials Science and Engineering, Chemnitz University of Technology, Erfenschlager Str. 73, 09125 Chemnitz, Germany

2. Professorship Micromanufacturing Technology, Institute for Machine Tools and Production Processes, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany

Abstract

AlSi7Mg/SiCp aluminium matrix composites (AMCs) with a high ceramic content (35 vol.%) that were produced by using the field-assisted sintering technique (FAST) were subjected to tribological preconditioning and evaluated as a potential lightweight material to substitute grey cast iron brake discs. However, since an uncontrolled running-in process of the AMC surface can lead to severe wear and thus to failure of the friction system, AMC surfaces cannot be used directly after finishing and have to be preconditioned. A defined generation of a tribologically conditioned surface (tribosurface) is necessary, as was the aim in this study. To simulate tribological conditions in automotive brake systems, the prepared AMC samples were tested in a pin-on-disc configuration against conventional brake lining material under dry sliding conditions. The influence of the surface topography generated by face turning using different indexable inserts and feeds or an additional plasma electrolytic treatment was investigated at varied test pressures and sliding distances. The results showed that the coefficient of friction remained nearly constant when the set pressure was reached, whereas the initial topography of the samples studied by SEM varied substantially. A novel approach based on analysing the material ratio determined by 3D surface measurement was developed in order to obtain quantitative findings for industrial application.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3