Ultrasonic-Vibration-Superimposed Face Turning of Aluminium Matrix Composite Components for Enhancing Friction-Surface Preconditioning

Author:

Eiselt Patrick1ORCID,Hirsch Sarah Johanna2ORCID,Ozdemir Ismail2ORCID,Nestler Andreas1ORCID,Grund Thomas2ORCID,Schubert Andreas1ORCID,Lampke Thomas2ORCID

Affiliation:

1. Micromanufacturing Technology, Institute for Machine Tools and Production Processes, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz, Germany

2. Materials and Surface Engineering, Institute of Materials Science and Engineering, Chemnitz University of Technology, Erfenschlager Str. 73, 09125 Chemnitz, Germany

Abstract

Aluminium matrix composites (AMCs) represent an important group of high-performance materials. Due to their specific strength and a high thermal conductivity, these composites have been considered for the large-scale production of brake discs. However, preconditioning the friction surfaces is necessary to avoid severe wear of both the brake discs and the brake linings. This can be achieved through controlled friction against commercially available brake-lining materials and the formation of transfer or reactive layers (tribosurfaces). Homogeneous tribosurfaces allow for nearly wear-free brake systems under moderate brake conditions. In this work, preconditioning was carried out with a pin-on-disc tester, aiming for the fast creation of homogeneously formed and stable tribosurfaces. The influence of surface microedges perpendicular to the direction of friction on the machined AMC surfaces on the build-up speed and homogeneity of the tribosurfaces was investigated. The microedges were generated using ultrasonic-vibration-superimposed face turning. Thereby, the vibration direction corresponded to the direction of the passive force. For research purposes, the distance of the microedges was changed by varying the cutting speed and feed. The experiments were carried out using AMC disc specimens with a reinforcement content of a 35% volume proportion of silicon carbide particles. Machining was realised with CVD-diamond-tipped indexable inserts. The evaluation of the generated surfaces before and after preconditioning was achieved using 3D laser scanning microscopy and scanning electron microscopy. It was demonstrated that ultrasonic-vibration-superimposed face turning effectively generated microedges on the AMC surfaces. The results show that larger distances between the microedges enhanced the formation of stable tribosurfaces. Thus, the tribosystem’s steady state was reached quickly. Therefore, the benefits of AMC-friction-surface microstructuring on the generation of tribosurfaces under laboratory conditions were proven. These findings contribute to the development of high-performance AMC brake systems.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3