Coordination among Water Transport, Photosynthesis and Nutrition under Climate Change: Stronger Responses of a Native than an Invasive Herb

Author:

Qi Jin-Hua,Yan Qiao-Shun,Tasnim RafaORCID,Zhang Lan,Fu Pei-Li,Fan Ze-XinORCID,Zhang Yong-JiangORCID

Abstract

Climate change will impact all plant physiological processes including water transport, photosynthesis, and nutrient assimilation. How these processes are coordinated in response to climate change is not fully understood. Here we tested how these processes will respond to elevated CO2 concentration ([CO2]) and temperatures for two herbaceous species (an invasive and a native Eupatorium species in East Asia; family Asteraceae) and whether these processes are coordinated using a controlled experiment. We also investigated the differences between these two species, and the structural basis for changes in physiology. Leaf photosynthetic capacity (Amax, measured under ambient conditions) increased significantly in the native species, while that of the invasive species did not change under elevated [CO2] and temperatures. The leaf hydraulic conductance (Kleaf) of both species tended to increase under elevated temperatures and [CO2], with that of the native species increasing to a greater extent. Changes in Kleaf and Amax were coordinated, and Kleaf was closely associated with leaf minor vein density across treatments. The increased photosynthetic capacity of the native species was probably related to an increased N investment in photosynthesis; its leaf N decreased but chlorophyll concentration increased inviting detailed studies in N partitioning. No coordination between water use (water transport, stomatal conductance, and water use efficiency) and leaf tissue nutrient (N, P) concentrations was found, probably owing to the active control in nutrient uptake. Thus, photosynthesis is coordinated with water transport in response to climate change, while the coordination between water use and nutrient accumulation can be absent due to active control. Our results also suggest that global climate change will not necessarily fuel more positive responses in invasive plants than native plants.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3