Transient Stability Enhancement Strategy for Islanded Microgrids Based on Energy Storage–Virtual Synchronous Machine Control

Author:

Ma Chenghao1,Sun Jiahang1,Huang Jingguang1,Wang Kaijie2

Affiliation:

1. College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China

2. State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

In a high percentage of new energy-islanded microgrids, the overall inertia of the system gradually decreases, and the transient stability requirements of the microgrid frequency and voltage become more and more demanding under low-inertia conditions. To improve the transient stability of low-inertia islanded microgrid frequencies and voltages, this paper proposes a transient stability enhancement strategy for islanded microgrids based on energy storage system (ESS)–virtual synchronous generator (VSG) control. Model predictive control (MPC) is added within the active control loop of the VSG to achieve dynamic correction of the active power reference value of the VSG; PI control link is added within the reactive control loop to achieve a fast dynamic response of the reactive power command value. The ESS achieves fast and accurate regulation of frequency and voltage according to the power reference value of the VSG active control loop and the power command value of the reactive control loop simultaneously. Considering the need to ensure the ability of VSG to operate stably during transients, a comprehensive current-limiting technique combining virtual impedance and phase limiting is used to limit the fault current of VSG and maintain its synchronization and stability. Finally, the simulation results verify the strategy’s effectiveness and the superiority of the transient stability enhancement effect.

Funder

National Natural Science Foundation of China

China National Key R&D Program during the 13th Five-year Plan Period

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3