Distributed Optimization of Islanded Microgrids Integrating Multi-Type VSG Frequency Regulation and Integrated Economic Dispatch

Author:

Xu Huixin1,Sun Jiahang1,Huang Jingguang1,Lin Xinyuan1,Ma Chenghao1

Affiliation:

1. National Virtual Simulation Experiment Centre for Electrical Engineering, China Three Gorges University, Yichang 443002, China

Abstract

The question of how to simultaneously perform frequency regulation and integrated economic scheduling for microgrids with low-inertia islanding operation under communication constraints is a difficult problem that needs to be solved for many current applications. To this end, this paper establishes a microgrid scheduling control model containing a virtual synchronous generator (VSG) with multiple types of power sources and proposes a distributed optimization algorithm that integrates frequency regulation and comprehensive economic scheduling to simultaneously realize frequency regulation and economic scheduling in a microgrid. Firstly, a distributed economic dispatch problem is proposed based on a comprehensive consideration of the costs and benefits of various types of power VSGs, as well as the overall inertia and standby capacity requirements of the microgrid, which minimizes the integrated costs incurred by the participation of each type of VSG in the frequency regulation and improves the stable operation of the microgrid in terms of frequency under perturbation. Then, the optimal scheduling problem is solved by reconstructing the optimization problem based on considering the dynamic characteristics of microgrid inverters and using event-triggered communication to sense and compensate for the supply-demand imbalance online. The proposed method can avoid inter-layer coordination across time scales, improve the inertia, frequency regulation capability, and economy of the system, and enhance its robustness to short-term communication failures. Finally, simulation results are used to verify the effectiveness of the method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3