Abstract
There is an urgent need for holistic tools to assess the health impacts of climate change mitigation and adaptation policies relating to increasing public green spaces. Urban vegetation provides numerous ecosystem services on a local scale and is therefore a potential adaptation strategy that can be used in an era of global warming to offset the increasing impacts of human activity on urban environments. In this study, we propose a set of urban green ecological metrics that can be used to evaluate urban green ecosystem services. The metrics were derived from two complementary surveys: a traditional remote sensing survey of multispectral images and Laser Imaging Detection and Ranging (LiDAR) data, and a survey using proximate sensing through images made available by the Google Street View database. In accordance with previous studies, two classes of metrics were calculated: greenery at lower and higher elevations than building facades. In the last phase of the work, the metrics were applied to city blocks, and a spatially constrained clustering methodology was employed. Homogeneous areas were identified in relation to the urban greenery characteristics. The proposed methodology represents the development of a geographic information system that can be used by public administrators and urban green designers to create and maintain urban public forests.
Subject
General Earth and Planetary Sciences
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献