Multi-Type Forest Change Detection Using BFAST and Monthly Landsat Time Series for Monitoring Spatiotemporal Dynamics of Forests in Subtropical Wetland

Author:

Wu Ling,Li Zhaoliang,Liu Xiangnan,Zhu Lihong,Tang Yibo,Zhang BiyaoORCID,Xu Boliang,Liu Meiling,Meng Yuanyuan,Liu Boyuan

Abstract

Land cover changes, especially excessive economic forest plantations, have significantly threatened the ecological security of West Dongting Lake wetland in China. This work aimed to investigate the spatiotemporal dynamics of forests in the West Dongting Lake region from 2000 to 2018 using a reconstructed monthly Landsat NDVI time series. The multi-type forest changes, including conversion from forest to another land cover category, conversion from another land cover category to forest, and conversion from forest to forest (such as flooding and replantation post-deforestation), and land cover categories before and after change were effectively detected by integrating Breaks For Additive Seasonal and Trend (BFAST) and random forest algorithms with the monthly NDVI time series, with an overall accuracy of 87.8%. On the basis of focusing on all the forest regions extracted through creating a forest mask for each image in time series and merging these to produce an ‘anytime’ forest mask, the spatiotemporal dynamics of forest were analyzed on the basis of the acquired information of multi-type forest changes and classification. The forests are principally distributed in the core zone of West Donting Lake surrounding the water body and the southwestern mountains. The forest changes in the core zone and low elevation region are prevalent and frequent. The variation of forest areas in West Dongting Lake experienced three steps: rapid expansion of forest plantation from 2000 to 2005, relatively steady from 2006 to 2011, and continuous decline since 2011, mainly caused by anthropogenic factors, such as government policies and economic profits. This study demonstrated the applicability of the integrated BFAST method to detect multi-type forest changes by using dense Landsat time series in the subtropical wetland ecosystem with low data availability.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3